These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exosomal miR-130a-3p regulates osteogenic differentiation of Human Adipose-Derived stem cells through mediating SIRT7/Wnt/β-catenin axis. Author: Yang S, Guo S, Tong S, Sun X. Journal: Cell Prolif; 2020 Oct; 53(10):e12890. PubMed ID: 32808361. Abstract: OBJECTIVES: It is of profound significance for clinical bone regeneration to clarify the specific molecular mechanism from which we found that osteogenic differentiation of adipose-derived stem cells (ADSCs) will be probably promoted by exosomes. MATERIALS AND METHODS: By means of lentiviral transfection, miR-130a-3p overexpression and knockdown ADSCs were constructed. Alizarin Red S was used to detect the calcium deposits, and qPCR was used to detect osteogenesis-related genes, to verify the effect of miR-130a-3p on the osteogenic differentiation of ADSCs. CCK-8 was used to detect the effect of miR-130a-3p on the proliferation of ADSCs. The target binding between miR-130a-3p and SIRT7 was verified by dual-luciferase reporter gene assay. Furthermore, the role of Wnt signalling pathway in the regulation of ADSCs osteogenesis and differentiation by miR-130a-3p was further verified by detecting osteogenic-related genes and proteins and alkaline phosphatase activity. RESULTS: (a) Overexpression of miR-130a-3p can enhance the osteogenic differentiation of ADSCs while reducing protein and mRNA levels of SIRT7, a target of miR-130a-3p. (b) Our study further found that overexpression of miR-130a-3p leads to down-regulation of SIRT7 expression with up-regulation of Wnt signalling pathway-associated protein. (c) Overexpression of miR-130a-3p inhibited proliferation of ADSCs, while knockdown promoted it. CONCLUSIONS: The obtained findings indicate that exosomal miR-130a-3p can promote osteogenic differentiation of ADSCs partly by mediating SIRT7/Wnt/β-catenin axis, which will hence promote the application of exosomal microRNA in the field of bone regeneration.[Abstract] [Full Text] [Related] [New Search]