These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aldehyde dehydrogenase 2 inhibited oxidized LDL-induced NLRP3 inflammasome priming and activation via attenuating oxidative stress.
    Author: Xu Y, Yuan Q, Cao S, Cui S, Xue L, Song X, Li Z, Xu R, Yuan Q, Li R.
    Journal: Biochem Biophys Res Commun; 2020 Sep 03; 529(4):998-1004. PubMed ID: 32819611.
    Abstract:
    Oxidized low-density lipoprotein (ox-LDL)-mediated NLRP3 inflammasome activation is crucial in atherosclerosis (AS) initiation and progression. Aldehyde dehydrogenase 2 (ALDH2) has been reported to display protective effects during AS development; however, the underlying mechanisms are largely unknown. Here we investigate the role of ALDH2 in ox-LDL-induced NLRP3 inflammasome priming and activation. We treated RAW264.7 murine macrophages with ox-LDL with or without ALDH2 activator Alda-1 and measured NLRP3 inflammasome priming and activation, ALDH2 protein expression and enzyme activity, IL-1β release, and DNA damage. It was found that ox-LDL impaired ALDH2 activity and induced NLRP3 inflammasome priming and activation. Alda-1 inhibited both of the priming and activation steps of NLRP3 inflammasome as well as subsequent cell pyroptosis and attenuated ROS and 4-HNE levels in ox-LDL-treated macrophages. Taken together, ALDH2 activation inhibits priming and activation of NLRP3 inflammasome via reducing oxidative stress, which suggests that ALDH2 may be a potential target for anti-inflammatory therapies in AS treatment.
    [Abstract] [Full Text] [Related] [New Search]