These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hormetic modulation of angiogenic factors by exercise-induced mechanical and metabolic stress in human skeletal muscle.
    Author: Fiorenza M, Gliemann L, Brandt N, Bangsbo J.
    Journal: Am J Physiol Heart Circ Physiol; 2020 Oct 01; 319(4):H824-H834. PubMed ID: 32822216.
    Abstract:
    This study used an integrative experimental model in humans to investigate whether muscle angiogenic factors are differentially modulated by exercise stimuli eliciting different degrees of mechanical and metabolic stress. In a randomized crossover design, 12 men performed two low-volume high-intensity exercise regimens, including short sprint intervals (SSI) or long sprint intervals (LSI) inducing pronounced mechanical/metabolic stress, and a high-volume moderate-intensity continuous exercise protocol (MIC) inducing mild but prolonged mechanical/metabolic stress. Gene and protein expression of angiogenic factors was determined in vastus lateralis muscle samples obtained before and after exercise. Exercise upregulated muscle VEGF mRNA to a greater extent in LSI and MIC compared with SSI. Analysis of angiogenic factors sensitive to shear stress revealed more marked exercise-induced VEGF receptor 2 (VEGF-R2) mRNA responses in MIC than SSI, as well as greater platelet endothelial cell adhesion molecule (PECAM-1) and endothelial nitric oxide synthase (eNOS) mRNA responses in LSI than SSI. No apparent exercise-induced phosphorylation of shear stress-sensory proteins VEGF-R2Tyr1175, PECAM-1Tyr713, and eNOSSer1177 was observed despite robust elevations in femoral artery shear stress. Exercise evoked greater mRNA responses of the mechanical stretch sensor matrix metalloproteinase-9 (MMP9) in SSI than MIC. Exercise-induced mRNA responses of the metabolic stress sensor hypoxia-inducible factor-1α (HIF-1α) were more profound in LSI than SSI. These results suggest that low-volume high-intensity exercise transcriptionally activates angiogenic factors in a mechanical/metabolic stress-dependent manner. Furthermore, the angiogenic potency of low-volume high-intensity exercise appears similar to that of high-volume moderate-intensity exercise, but only on condition of eliciting severe mechanical/metabolic stress. We conclude that the angiogenic stimulus produced by exercise depends on both magnitude and protraction of myocellular homeostatic perturbations.NEW & NOTEWORTHY Skeletal muscle capillary growth is orchestrated by angiogenic factors sensitive to mechanical and metabolic signals. In this study, we employed an integrative exercise model to synergistically target, yet to different extents and for different durations, the mechanical and metabolic components of muscle activity that promote angiogenesis. Our results suggest that the magnitude of the myocellular perturbations incurred during exercise determines the amplitude of the angiogenic molecular signals, implying hormetic modulation of skeletal muscle angiogenesis by exercise-induced mechanical and metabolic stress.
    [Abstract] [Full Text] [Related] [New Search]