These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Repeatability of skin-markers based kinematic measures from a multi-segment foot model in walking and running.
    Author: Matias AB, Caravaggi P, Leardini A, Taddei UT, Ortolani M, Sacco I.
    Journal: J Biomech; 2020 Sep 18; 110():109983. PubMed ID: 32827772.
    Abstract:
    Skin-markers based multi-segment models are growing in popularity to assess foot joint kinematics in different motor tasks. However, scarce is the current knowledge of the effect of high-energy motor tasks, such as running, on the repeatability of these measurements. This study aimed at assessing and comparing the inter-trial, inter-session, and inter-examiner repeatability of skin-markers based foot kinematic measures in walking and running in healthy adults. The repeatability of 24 kinematic measures from an established multi-segment foot model were assessed in two volunteers during multiple barefoot walking and running trials by four examiners in three sessions. Statistical Parametric Mapping (1D-SPM) analysis was performed to assess the degree of shape-similarity between patterns of kinematic measurements. The average inter-trial variability across measurements (deg) was 1.0 ± 0.3 and 0.8 ± 0.3, the inter-session was 3.9 ± 1.4 and 4.4 ± 1.5, and the inter-examiner was 5.4 ± 2.3 and 5.7 ± 2.2, respectively in walking and running. Inter-session variability was generally similar between the two motor tasks, but significantly larger in running for two kinematic measures (p < 0.01). Inter-examiner variability was generally larger than inter-trial and inter-session variability. While no significant differences in frame-by-frame offset variability was detected in foot kinematics between walking and running, 1D-SPM revealed that the shape of kinematic measurements was significantly affected by the motor task, with running being less repeatable than walking. Although confirmation on a larger population and with different kinematic protocols should be sought, attention should be paid in the interpretation of skin-markers based kinematics in running across sessions or involving multiple examiners.
    [Abstract] [Full Text] [Related] [New Search]