These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of Tomato bushy stunt virus-based vectors for fusion and non-fusion expression of heterologous proteins in an alternative host Nicotiana excelsiana.
    Author: Zhang X, Ding X, Li Z, Wang S.
    Journal: Appl Microbiol Biotechnol; 2020 Oct; 104(19):8413-8425. PubMed ID: 32830290.
    Abstract:
    Plant virus-based expression systems are an alternative expression platform for the production of clinically and industrially useful recombinant proteins. Nonetheless, due to a lack of viral vector with the commercial potentials, it is urgent to design and develop new, versatile, and efficient plant virus vectors. The genome of Tomato bushy stunt virus (TBSV) offers an attractive alternative to being modified as a vector for producing heterologous proteins in plants. Here, we developed a set of novel fusion and non-fusion TBSV-CP replacement vectors, which provide more flexible and efficient tools for expressing proteins of interest in plants. An alternative tobacco plant, Nicotiana excelsiana, was used in this study as a host for newly constructed TBSV vectors because the unwanted necrotic effects were reported on the commonly used Nicotiana benthamiana host associated with expression of TBSV-encoded P19 protein. The data showed that TBSV vectors caused a symptomless infection and overexpressed reporter gene in N. excelsiana leaves, demonstrating that N. excelsiana is an ideal host plant for TBSV-mediated heterologous gene expression. Moreover, a TBSV non-fusion vector, dAUG, shows the similar accumulation level of reporter proteins to that of TMV- and PVX-based vectors in side-by-side comparison and provides more flexible aspects than the previously developed TBSV vectors. Collectively, our newly developed TBSV expression system adds a new member to the family of plant viral expression vectors and meanwhile offers a flexible and highly effective approach for producing proteins of interest in plants. KEY POINTS: • The TBSV-based transient expression system has been significantly improved. • The necrotic effects caused by viral P19 protein were avoided by the usage of N. excelsiana as a host plant. • The expression level of the non-fusion vector was similar to the most effective virus vectors reported so far.
    [Abstract] [Full Text] [Related] [New Search]