These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Long Noncoding RNA NEAT1 Promotes the Progression of Breast Cancer by Regulating miR-138-5p/ZFX Axis. Author: Yao L, Chen L, Zhou H, Duan F, Wang L, Zhang Y. Journal: Cancer Biother Radiopharm; 2022 Oct; 37(8):636-649. PubMed ID: 32833504. Abstract: Background: Growing evidence demonstrated that long noncoding RNAs (lncRNAs) were involved in the progression of diverse cancers, including breast cancer (BC). Recent studies indicated that lncRNA nuclear enriched abundant transcript 1 (NEAT1) was overexpressed and facilitated tumor processes in many cancers. Nevertheless, the underlying mechanism of NEAT1 in regulating BC progression is still largely unknown. Materials and Methods: The abundance of NEAT1, microRNA-138-5p (miR-138-5p), and zinc finger protein X-linked (ZFX) was assessed by quantitative real-time polymerase chain reaction. Cell Counting Kit-8 (CCK-8) assay, flow cytometry, and transwell assay were utilized to evaluate cell proliferation, apoptosis, migration, and invasion, respectively. Western blot analysis was applied to detect the protein expression of CyclinD1, Bax, E-cadherin, and ZFX. The interaction between miR-138-5p and NEAT1 or ZFX was predicted by starBase v3.0 and validated by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation assays. The mice xenograft model was established to investigate the roles of NEAT1 in vivo. Results:NEAT1 was highly expressed and miR-138-5p was lowly expressed in BC tissues and cells. NEAT1 interference or miR-138-5p restoration repressed cell proliferation, migration, and invasion but accelerated apoptosis in BC cells. Moreover, miR-138-5p directly interacted with NEAT1 and its knockdown reversed the suppressive impact of NEAT1 downregulation on the progression of BC cells. In addition, ZFX was a downstream target of miR-138-5p and its upregulation attenuated the antitumor role of miR-138-5p in BC cells. Besides, ZFX expression was positively regulated by NEAT1 and inversely modulated by miR-138-5p. Furthermore, interference of NEAT1 inhibited tumor growth by upregulating miR-138-5p and downregulating ZFX. Conclusion:NEAT1 affected BC progression through modulating miR-138-5p/ZFX axis, providing a vital theoretical basis for BC treatment.[Abstract] [Full Text] [Related] [New Search]