These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Aqueous Synthesis of DNA-Functionalized Near-Infrared AgInS2/ZnS Core/Shell Quantum Dots. Author: Delices A, Moodelly D, Hurot C, Hou Y, Ling WL, Saint-Pierre C, Gasparutto D, Nogues G, Reiss P, Kheng K. Journal: ACS Appl Mater Interfaces; 2020 Sep 30; 12(39):44026-44038. PubMed ID: 32840358. Abstract: Biocompatibility, biofunctionality, and chemical stability are essential criteria to be fulfilled by quantum dot (QD) emitters for bio-imaging and -sensing applications. In addition to these criteria, achieving efficient near-infrared (NIR) emission with nontoxic QDs remains very challenging. In this perspective, we developed water-soluble NIR-emitting AgInS2/ZnS core/shell (AIS/ZnS) QDs functionalized with DNA. The newly established aqueous route relying on a two-step hot-injection synthesis led to highly luminescent chalcopyrite-type AIS/ZnS core/shell QDs with an unprecedented photoluminescence quantum yield (PLQY) of 55% at 700 nm and a long photoluminescence (PL) decay time of 900 ns. Fast and slow hot injection of the precursors were compared for the AIS core QD synthesis, yielding a completely different behavior in terms of size, size distribution, stoichiometry, and crystal structure. The PL peak positions of both types of core QDs were 710 (fast) and 760 nm (slow injection) with PLQYs of 36 and 8%, respectively. The slow and successive incorporation of the Zn and S precursors during the subsequent shell growth step on the stronger emitting cores promoted the formation of a three-monolayer thick ZnS shell, evidenced by the increase of the average QD size from 3.0 to 4.8 nm. Bioconjugation of the AIS/ZnS QDs with hexylthiol-modified DNA was achieved during the ZnS shell growth, resulting in a grafting level of 5-6 DNA single strands per QD. The successful chemical conjugation of DNA was attested by UV-vis spectroscopy and agarose gel electrophoresis. Importantly, surface plasmon resonance imaging experiments using complementary DNA strands further corroborated the successful coupling and the stability of the AIS/ZnS-DNA QD conjugates as well as the preservation of the biological activity of the anchored DNA. The strong NIR emission and biocompatibility of these AIS/ZnS-DNA QDs provide a high potential for their use in biomedical applications.[Abstract] [Full Text] [Related] [New Search]