These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Three-Fold Enhancement of In-Plane Thermal Conductivity of Borophene through Metallic Atom Intercalation. Author: Hu Y, Yin Y, Li S, Zhou H, Li D, Zhang G. Journal: Nano Lett; 2020 Oct 14; 20(10):7619-7626. PubMed ID: 32852213. Abstract: We studied the thermal conductivity of Al-intercalated bilayer δ4 borophene sheet by solving phonon Boltzmann transport equation based on density functional theory. Although the overall atomic density of Al-intercalated borophene is larger than that of δ4 borophene, it possesses significant enhancement in in-plane thermal conductivity. With metallic atom intercalation, the armchair-direction thermal conductivity increases from 53.8 to 160.2 W m-1 K-1 and that along the zigzag direction increases from 115.7 to 157.2 W m-1 K-1. This pronounced enhancement is attributed to the bunching of the acoustic branches in the Al-intercalated borophene, which decreases the phase space for the high frequency three acoustic phonon scattering processes. In addition to the pronounced increased thermal conductivity, the Al-intercalation also tunes the in-plane anisotropy. This study illustrates the importance of metallic atom intercalation in the in-plane thermal conductivity of 2D van der Waals materials and also has practical implications for fields ranging from thermal management to thermoelectrics design.[Abstract] [Full Text] [Related] [New Search]