These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Endogenous asymmetric dimethylarginine accumulation contributes to the suppression of myocardial mitochondrial biogenesis in type 2 diabetic rats. Author: Xiong Y, Hai CX, Fang WJ, Lei YP, Li XM, Zhou XK. Journal: Nutr Metab (Lond); 2020; 17():72. PubMed ID: 32855652. Abstract: BACKGROUND: Suppressed mitochondrial biosynthesis has been reported to be the early signal of mitochondrial dysfunction which contributes to diabetic cardiomyopathy, but the mechanism of mitochondrial biosynthesis suppression is unclear. Nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) is closely related to diabetic cardiovascular complications. This study was to determine whether endogenous ADMA accumulation was involved in the suppression of myocardial mitochondrial biogenesis in diabetic rats and to elucidate the potential mechanism in rat cardiomyocytes. METHODS: Type 2 diabetic rat model was induced by high-fat feeding plus single intraperitoneal injection of small dose streptozotocin (35 mg/kg). The copy number ratio of mitochondrial gene to nuclear gene was measured to reflect mitochondrial biogenesis. The promoter activity of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and its post-translational modifications were detected by dual-luciferase reporter assay and immunoprecipitation. RESULTS: Myocardial ADMA content was enhanced and associated with suppressions of myocardial mitochondrial biogenesis and cardiac function in parallel with PGC-1α downregulation and uncoupling protein 2 (UCP2) upregulation in the myocardium of diabetic rats compared with control rats. Similarly, ADMA and its homolog could inhibit myocardial mitochondrial biogenesis and PGC-1α expression, increase UCP2 expression and oxidative stress in vitro and in vivo. Moreover, ADMA also suppressed the promoter activity and PGC-1α expression but boosting its protein acetylation and phosphorylation in rat cardiomyocytes. CONCLUSIONS: These results indicate that endogenous ADMA accumulation contributes to suppression of myocardial mitochondrial biogenesis in type 2 diabetic rats. The underlying mechanisms may be associated with reducing PGC-1α promoter activity and expression but boosting its protein acetylation and phosphorylation.[Abstract] [Full Text] [Related] [New Search]