These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exploration of thioridazine-induced Ca2+ signaling and non-Ca2+-triggered cell death in HepG2 human hepatocellular carcinoma cells. Author: Chen IS, Liang WZ, Wang JL, Kuo CC, Hao LJ, Chou CT, Jan CR. Journal: Chin J Physiol; 2020; 63(4):187-194. PubMed ID: 32859886. Abstract: Thioridazine, belonging to first-generation antipsychotic drugs, is a prescription used to treat schizophrenia. However, the effect of thioridazine on intracellular Ca2+ concentration ([Ca2+]i) and viability in human liver cancer cells is unclear. This study examined whether thioridazine altered Ca2+ signaling and viability in HepG2 human hepatocellular carcinoma cells. Ca2+ concentrations in suspended cells were measured using the fluorescent Ca2+-sensitive dye fura-2. Cell viability was examined by WST-1 assay. Thioridazine at concentrations of 25-100 μM induced [Ca2+]i rises. Ca2+ removal reduced the signal by 20%. Thioridazine (100 μM) induced Mn2+ influx suggesting of Ca2+ entry. Thioridazine-induced Ca2+ entry was inhibited by 20% by protein kinase C (PKC) activator (phorbol 12-myristate 13 acetate) and inhibitor (GF109203X) and by three inhibitors of store-operated Ca2+ channels: nifedipine, econazole, and SKF96365. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) abolished thioridazine-evoked [Ca2+]i rises. On the other hand, thioridazine preincubation completely inhibited the [Ca2+]i rises induced by TG. Furthermore, U73122 totally suppressed the [Ca2+]i rises induced by thioridazine via inhibition of phospholipase C (PLC). Regarding cytotoxicity, at 30-80 μM, thioridazine reduced cell viability in a concentration-dependent fashion. This cytotoxicity was not prevented by preincubation with 1,2-bis (2-aminophenoxy) ethane-N, N, N', N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM) (a Ca2+ chelator). To conclude, thioridazine caused concentration-dependent [Ca2+]i rises in HepG2 human hepatoma cells by inducing Ca2+ release from the endoplasmic reticulum via PLC-associated pathways and Ca2+ influx from extracellular medium through PKC-sensitive store-operated Ca2+ entry. In addition, thioridazine induced cytotoxicity in a Ca2+-independent manner.[Abstract] [Full Text] [Related] [New Search]