These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of different ash/organics and C/H/O ratios on characteristics and reaction mechanisms of sludge microwave pyrolysis to generate bio-fuels. Author: Luo J, Lin J, Ma R, Chen X, Sun S, Zhang P, Liu X. Journal: Waste Manag; 2020 Nov; 117():188-197. PubMed ID: 32861081. Abstract: To study the effects of different ash/organics and C/H/O ratios on bio-fuel characteristics and energy efficiency, four kinds of sludge with different properties were used for microwave pyrolysis (800 °C). Moreover, the microwave pyrolysis reaction mechanisms of different sludge were also explored. The results showed that high-ash sludge could accelerate the frequency of polar molecule rotation in the microwave field due to the presence of oxides with dielectric properties in ash, thereby achieving faster heating rates and higher temperatures. However, compared with high-organic sludge, high-ash sludge exhibited lower bio-gas yield and higher bio-char yield. As the H/C ratio increased from 0.127 to 0.148, the bio-gas yield increased from 15.41% to 40.01%, and the content of H2 in bio-gas and aliphatics in bio-oil increased to 36.69 vol% and 26.54 wt%, respectively. When the O/C ratio was reduced to 1.31, the content of CO and oxygenated compound in bio-oil increased to 31.25 vol% and 40.04 wt%, which lowered the quality of the bio-oil. Those consequences also determined that a mixture of sludge with different ash/organic ratios could be pyrolyzed to obtain high-quality bio-fuels and high energy efficiency. Differences in C/H/O ratios in the mixed sludge greatly affected the microwave pyrolysis heating process, which affected the pyrolysis reactions and the quality of the bio-fuels. Therefore, this study provides a theoretical basis to elevate the quality of bio-fuels and reduce microwave pyrolysis costs.[Abstract] [Full Text] [Related] [New Search]