These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient Ambient Electrocatalytic Ammonia Synthesis by Nanogold Triggered via Boron Clusters Combined with Carbon Nanotubes.
    Author: Zhao X, Yang Z, Kuklin AV, Baryshnikov GV, Ågren H, Zhou X, Zhang H.
    Journal: ACS Appl Mater Interfaces; 2020 Sep 23; 12(38):42821-42831. PubMed ID: 32865968.
    Abstract:
    Currently, the development of stable electrochemical nitrogen reduction reaction (ENRR) catalysts with high N2 conversion activity and low cost to instead of the traditional Haber-Bosch ammonia production process of high-energy consumption remains a great challenge for researchers. Here, we have immobilized reductive closo-[B12H11]- boron clusters on a carbon nanotubes (CNT) surface and have successfully prepared a novel Au-CNT catalyst with extraordinary ENRR activity after adding HAuCl4 to the CNT-[B12H11]- precursor. The excellent properties of ammonia yield (57.7 μg h-1 cm-2) and Faradaic efficiency (11.97%) make it possible to achieve using this Au-CNT catalyst in large-scale industrial production of ammonia. Furthermore, its outstanding cyclic stability and long-term tolerability performance make it one of the most cost-effective catalysts to date. Here, by means of density functional theory we disclose the associative mechanism of N2-to-NH3 conversion on the Au(111) surface, providing visual theoretical support for the experimental results.
    [Abstract] [Full Text] [Related] [New Search]