These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Author: Chen KE, Chen HY, Tseng CS, Tsay YF. Journal: Nat Plants; 2020 Sep; 6(9):1126-1135. PubMed ID: 32868892. Abstract: Increasing nitrogen use efficiency (NUE) is critical to improve crop yield, reduce N fertilizer demand and alleviate environmental pollution. N remobilization is a key component of NUE. The nitrate transporter NRT1.7 is responsible for loading excess nitrate stored in source leaves into phloem and facilitates nitrate allocation to sink leaves. Under N starvation, the nrt1.7 mutant exhibits growth retardation, indicating that NRT1.7-mediated source-to-sink remobilization of stored nitrate is important for sustaining growth in plants. To energize NRT1.7-mediated nitrate recycling, we introduced a hyperactive chimeric nitrate transporter NC4N driven by the NRT1.7 promoter into the nrt1.7 mutant. NRT1.7p::NC4N::3' transgenic plants accumulated more nitrate in younger leaves, and 15NO3- tracing analysis revealed that more 15N was remobilized into sink tissues. Consistently, transgenic Arabidopsis, tobacco and rice plants showed improved growth or yield. Our study suggests that enhancing source-to-sink nitrate remobilization represents a new strategy for enhancing NUE and crop production.[Abstract] [Full Text] [Related] [New Search]