These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pretreatment MR-based radiomics nomogram as potential imaging biomarker for individualized assessment of perineural invasion status in rectal cancer. Author: Chen J, Chen Y, Zheng D, Pang P, Zhang H, Zheng X, Liao J. Journal: Abdom Radiol (NY); 2021 Mar; 46(3):847-857. PubMed ID: 32870349. Abstract: PURPOSE: To investigate whether pretreatment magnetic resonance (MR)-based radiomics nomogram can individualize prediction of perineural invasion (PNI) status in rectal cancer (RC). MATERIAL AND METHODS: A total of 122 RC patients with pathologically confirmed were classified as training cohort (n = 87) and test cohort (n = 35). 180 radiomics features were extracted from all lesions based on oblique axial T2WI TSE images. The dimensionality reduction and feature selection in training cohort were realized by the maximum relevance minimum redundancy (mRMR) algorithm and the least absolute shrinkage and selection operator (LASSO) regression model. A predictive model combining radiomics features and clinical risk factors (pathological N stage, pathological LVI status) was established by multivariate logistic regression analysis. The performance of the model was assessed based on its receiver operating characteristic (ROC) curve, nomogram, and calibration. RESULTS: The developed radiomics nomogram that integrated the radiomics signature and clinical risk factors could provide discrimination in the training and test cohorts. The accuracy and the area under the curve (AUC) for assessing PNI status were 0.82, 0.86, respectively, in the training cohort, while they were 0.71 and 0.85 in the test cohort. The goodness-of-fit of the nomogram was evaluated using the Hosmer-Lemeshow test (p = 0.52 in training cohort and p = 0.24 in test cohort). Decision curve analysis (DCA) showed that the radiomics nomogram was clinically useful. CONCLUSION: The developed radiomics nomogram might be helpful in the individualized assessment PNI status in patients with RC. This stratification of RC patients according to their PNI status may provide the basis for individualized adjuvant therapy, especially for stage II patients.[Abstract] [Full Text] [Related] [New Search]