These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isoquinolinone derivatives as potent CNS multi-receptor D2/5-HT1A/5-HT2A/5-HT6/5-HT7 agents: Synthesis and pharmacological evaluation. Author: Jin J, Zhang K, Dou F, Hao C, Zhang Y, Cao X, Gao L, Xiong J, Liu X, Liu BF, Zhang G, Chen Y. Journal: Eur J Med Chem; 2020 Dec 01; 207():112709. PubMed ID: 32877805. Abstract: In this study, a series of novel Isoquinolinone derivatives were synthesized as potential multi-target antipsychotics. Among these, compound 13 showed high affinity for dopamine D2 and serotonin 5-HT1A, 5-HT2A, 5-HT6, and 5-HT7 receptors, showed low affinity for off-target receptors (5-HT2C, H1, and α1), and negligible effects on ether-a-gogo-related gene (hERG; i.e., reduced QT interval prolongation). An animal behavioral study revealed that compound 13 reversed APO-induced hyperlocomotion, MK-801-induced hyperactivity, and DOI-induced head twitch. Moreover, compound 13 exhibited a high threshold for acute toxicity, a lack of tendency to induce catalepsy, and did not cause prolactin secretion or weight gain when compared to risperidone. Furthermore, in the forced swim test, tail suspension test, and novel object recognition test, treatment with compound 13 resulted in improvements in depression and cognitive impairment. In addition, compound 13 had a favorable pharmacokinetic profile in rats. Thus, the antipsychotic drug-like effects of compound 13 indicate that it may be useful for developing a novel class of drugs for the treatment of schizophrenia.[Abstract] [Full Text] [Related] [New Search]