These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Variational finite element approach to study heat transfer in the biological tissues of premature infants. Author: Mubarak S, Khanday MA, Haq AU. Journal: J Therm Biol; 2020 Aug; 92():102669. PubMed ID: 32888572. Abstract: The body temperature of newborn preterm infants depends on the heat transfer between the infant and the external environment. Factors that influence the heat exchange include the temperature and humidity of the air and the temperature of surfaces in contact with and around the infant. Neonatal thermoregulation has a different pattern as they have an immature thermoregulatory system. For this purpose, mathematical models can provide detailed insights for the heat transfer processes and its applications for clinical purposes. A new multi-compartment mathematical model of the neonatal thermoregulatory system is presented. The formulation of the model is based on the Pennes' bio-heat equation with suitable boundary and initial conditions. The variational finite element method has been employed to determine heat transfer and exchange in the biological tissues of premature infants. The results obtained in this paper have shown that premature infants are unable to maintain a constant core temperature and resemble the empirically obtained results, proving the validity and feasibility of our model. AMS (2010): SUBJECT CLASSIFICATION: 92BXX, 92CXX, 92C35, 92C50, 46N60.[Abstract] [Full Text] [Related] [New Search]