These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Silver nanoclusters-based fluorescent biosensing strategy for determination of mucin 1: Combination of exonuclease I-assisted target recycling and graphene oxide-assisted hybridization chain reaction.
    Author: Wu H, Wu J, Liu Y, Wang H, Zou P.
    Journal: Anal Chim Acta; 2020 Sep 08; 1129():40-48. PubMed ID: 32891389.
    Abstract:
    A novel label-free fluorescent biosensing strategy was described for the sensitive detection of mucin 1 (MUC1). It consisted of an M-shaped aptamer probe for exonuclease I (Exo I)-assisted target recycling (EATR) amplification, and two AgNCs-hairpin probes for graphene oxide (GO)-assisted hybridization chain reaction (HCR) amplification. Based on the specificity of aptamer-target recognition, the addition of MUC1 caused a conformational change in the M-shaped aptamer probe, which was split into a MUC1-P3 complex and a P1-P2 duplex. Exo I then catalyzed the cleavage of aptamer sequence P3 from the MUC1-P3 complex and released the target MUC1. The released target MUC1 was free to bind with a new M-shaped probe to perform EATR amplification. Furthermore, the P1-P2 duplex with three single-stranded arms can act as a primer to initiate HCR between hairpin probes AgNCs-H1 and AgNCs-H2. In the process of HCR, two AgNCs-hairpins were autonomously cross-opened, generating long linear double-stranded nanowires containing large numbers of AgNCs. These nanowires cannot be quenched by GO due to the weak affinity between the long double-stranded DNA and GO, thereby retaining a strong fluorescent signal indicative of the concentration of MUC1. With these designs, in addition to an extremely low detection limit of 0.36 fg mL-1, the method exhibited an acceptable linear response to detect MUC1 from 1 fg mL-1 to 1 ng mL-1. Additionally, this method could be exerted with a high degree of success to detect MUC1 in diluted human serum with satisfactory results.
    [Abstract] [Full Text] [Related] [New Search]