These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stabilization of Lipid Membranes through Partitioning of the Blood Bag Plasticizer Di-2-ethylhexyl phthalate (DEHP). Author: Bider RC, Lluka T, Himbert S, Khondker A, Qadri SM, Sheffield WP, Rheinstädter MC. Journal: Langmuir; 2020 Oct 13; 36(40):11899-11907. PubMed ID: 32903014. Abstract: The safe storage of blood is of fundamental importance to health care systems all over the world. Currently, plastic bags are used for the collection and storage of donated blood and are typically made of poly(vinyl chloride) (PVC) plasticized with di-2-ethylhexyl phthalate (DEHP). DEHP is known to migrate into packed red blood cells (RBC) and has been found to extend their shelf life. It has been speculated that DEHP incorporates itself into the RBC membrane and alters membrane properties, thereby reducing susceptibility to hemolysis and morphological deterioration. Here, we used high-resolution X-ray diffraction and molecular dynamics (MD) simulations to study the interaction between DEHP and model POPC lipid membranes at high (9 mol %) and low (1 mol %) concentrations of DEHP. At both concentrations, DEHP was found to spontaneously partition into the bilayer. At high concentrations, DEHP molecules were found to aggregate in the aqueous phase before inserting as clusters into the membrane. The presence of DEHP in the bilayers resulted in subtle, yet statistically significant, alterations in several membrane properties in both the X-ray diffraction experiments and MD simulations. DEHP led to (1) an increase of membrane width and (2) an increase in the area per lipid. It was also found to (3) increase the deuterium order parameter, however, (4) decrease membrane orientation, indicating the formation of thicker, stiffer membranes with increased local curvature. The observed effects of DEHP on lipid bilayers may help to better understand its effect on RBC membranes in increasing the longevity of stored blood by improving membrane stability.[Abstract] [Full Text] [Related] [New Search]