These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcitriol inhibits COX-1 and COX-2 expressions of renal vasculature in hypertension: Reactive oxygen species involved?
    Author: Suo Z, Liu Y, Li Y, Xu C, Liu Y, Gao M, Dong J.
    Journal: Clin Exp Hypertens; 2021 Jan 02; 43(1):91-100. PubMed ID: 32909857.
    Abstract:
    Vitamin D modulates about 3% human gene transcription besides the classical action on calcium/phosphorus homeostasis. The blood pressure-lowing and other protective action on cardiovascular disease have been reported. The present study aims to examine whether COX-1 and COX-2 were implicated in endothelial dysfunction in hypertension and calcitriol, an active form of vitamin D preserved endothelial function through regulating COX expression. Isometric study demonstrated the impaired endothelium-dependent relaxation (EDR) in renal arteries from spontaneously hypertensive rats were reversed by 12 h-calcitriol treatment and COX-1 and COX-2 inhibitors. Combined uses of COX-1 and COX-2 inhibitor induced more improved relaxations. Exaggerated expressions of COX-1 and COX-2 in renal artery from SHR were inhibited by 12 h-administration of calcitriol, NADPH oxidase inhibitor DPI, or reactive oxygen species (ROS) scavenger tempol. Furthermore, in normotensive WKY rats, calcitriol prevents against the blunted EDR in renal arteries by 12 h-Ang II exposure, with similar improvements by COX-1 and COX-2 inhibitors. Accordingly, increased COX-1 and COX-2 expressions by Ang II exposure were corrected by losartan, DPI, or tempol. Studies on human renal artery also revealed the beneficial action of calcitriol is mediated by suppressing COX-1 and COX-2 expressions, dependent on vitamin D receptor (VDR) activation. Taken together, our findings showed that COX-1 and COX-2 are positively involved in the renovascular dysfunction in hypertension and via VDR, calcitriol benefits renovasular function by suppressing COX-1 and COX-2 expressions. Furthermore, ROS is involved in the COX-1 and COX-2 up-regulations of renal arteries, maybe serving as a mediator in the inhibitory action of calcitriol on COX expression.
    [Abstract] [Full Text] [Related] [New Search]