These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Constructing CeO2/nitrogen-doped carbon quantum dot/g-C3N4 heterojunction photocatalysts for highly efficient visible light photocatalysis.
    Author: Qi H, Shi C, Jiang X, Teng M, Sun Z, Huang Z, Pan D, Liu S, Guo Z.
    Journal: Nanoscale; 2020 Oct 07; 12(37):19112-19120. PubMed ID: 32926033.
    Abstract:
    Ternary CeO2/nitrogen-doped carbon quantum dot (NCQD)/graphitic carbon nitride (g-C3N4) heterojunction nanocomposites were prepared by a high-temperature calcination and hydrothermal method and tested for degrading tetracycline (TC) and generating H2. Compared with CeO2 and g-C3N4, the Z-scheme CeO2/NCQDs/g-C3N4 (CSNx, where x represents the amount of CeO2 in wt%) nanoparticles showed a higher TC photodegradation capacity and H2 evolution ability owing to enhanced efficient charge separation and photocatalytic stability. CSN5 showed the best photodegradation activity for TC degradation (100 mL, 20 mg L-1; 100% degradation in 60 min; λ≥ 420 nm) and the highest H2 evolution rate of 1275.42 μmol h-1 g-1 was approximately 3.73- and 32.25-times higher than those of pristine g-C3N4 (341.85 μmol h-1 g-1) and pure CeO2 (39.55 μmol h-1 g-1), respectively. Superoxide (˙O2-) and hydroxyl (˙OH) radicals were also confirmed to be formed on the sample surface for TC photocatalytic degradation. As an electronic medium, NCQDs transferred electrons between the g-C3N4 and CeO2 interface to promote the electron-hole separation. This work affords a helpful perspective for synthesizing efficient charge separation and environmentally friendly photocatalysts by controlling the surface heterostructure.
    [Abstract] [Full Text] [Related] [New Search]