These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Self-Concentrated Surface-Enhanced Raman Scattering-Active Droplet Sensor with Three-Dimensional Hot Spots for Highly Sensitive Molecular Detection in Complex Liquid Environments. Author: Li R, Gui B, Mao H, Yang Y, Chen D, Xiong J. Journal: ACS Sens; 2020 Nov 25; 5(11):3420-3431. PubMed ID: 32929960. Abstract: In this work, a surface-enhanced Raman scattering (SERS)-active droplet with three-dimensional (3D) hot spots prepared from a superhydrophobic SERS substrate, which is inspired by the nut wizard strategy, was developed for ultrasensitive detection in complex liquid environments. The SERS substrate was composed of silver-capped parylene C-coated carbon nanoparticles (Ag-PC@CNPs). Such a SERS substrate was prepared by candle-soot deposition to provide a porous carbon nanoparticle layer followed by deposition of a parylene C film to protect the CNPs and then sputtering of silver nanoparticles. Similar to a nut wizard, a droplet rolling on the Ag-PC@CNP-coated substrate picked up the Ag-PC@CNPs. In this way, a self-concentrated and extremely sensitive SERS-active droplet sensor with 3D hot spots was formed. The sensor did not require precise laser focusing and showed relatively high repeatability and much higher sensitivity than those of a corresponding SERS substrate with two-dimensional hot spots. The sensor also achieved high sensitivity and specificity in complex liquid environments; in addition, bovine serum albumin with a concentration as low as 1 pM can be achieved. Consequently, an extremely simple, flexible, and highly sensitive SERS detection technique applicable to liquid biopsy analysis is anticipated.[Abstract] [Full Text] [Related] [New Search]