These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phytantriol-Based Cubosome Formulation as an Antimicrobial against Lipopolysaccharide-Deficient Gram-Negative Bacteria.
    Author: Lai X, Ding Y, Wu CM, Chen X, Jiang JH, Hsu HY, Wang Y, Le Brun AP, Song J, Han ML, Li J, Shen HH.
    Journal: ACS Appl Mater Interfaces; 2020 Oct 07; 12(40):44485-44498. PubMed ID: 32942850.
    Abstract:
    Treatment of multidrug-resistant (MDR) bacterial infections increasingly relies on last-line antibiotics, such as polymyxins, with the urgent need for discovery of new antimicrobials. Nanotechnology-based antimicrobials have gained significant importance to prevent the catastrophic emergence of MDR over the past decade. In this study, phytantriol-based nanoparticles, named cubosomes, were prepared and examined in vitro by minimum inhibitory concentration (MIC) and time-kill assays against Gram-negative bacteria: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Phytantriol-based cubosomes were highly bactericidal against polymyxin-resistant, lipopolysaccharide (LPS)-deficient A. baumannii strains. Small-angle neutron scattering (SANS) was employed to understand the structural changes in biomimetic membranes that replicate the composition of these LPS-deficient strains upon treatment with cubosomes. Additionally, to further understand the membrane-cubosome interface, neutron reflectivity (NR) was used to investigate the interaction of cubosomes with model bacterial membranes on a solid support. These results reveal that cubosomes might be a new strategy for combating LPS-deficient Gram-negative pathogens.
    [Abstract] [Full Text] [Related] [New Search]