These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A postsynaptic Mr 58,000 (58K) protein concentrated at acetylcholine receptor-rich sites in Torpedo electroplaques and skeletal muscle.
    Author: Froehner SC, Murnane AA, Tobler M, Peng HB, Sealock R.
    Journal: J Cell Biol; 1987 Jun; 104(6):1633-46. PubMed ID: 3294859.
    Abstract:
    In the study of proteins that may participate in the events responsible for organization of macromolecules in the postsynaptic membrane, we have used a mAb to an Mr 58,000 protein (58K protein) found in purified acetylcholine receptor (AChR)-enriched membranes from Torpedo electrocytes. Immunogold labeling with the mAb shows that the 58K protein is located on the cytoplasmic side of Torpedo postsynaptic membranes and is most concentrated near the crests of the postjunctional folds, i.e., at sites of high AChR concentration. The mAb also recognizes a skeletal muscle protein with biochemical characteristics very similar to the electrocyte 58K protein. In immunofluorescence experiments on adult mammalian skeletal muscle, the 58K protein mAb labels endplates very intensely, but staining of extrasynaptic membrane is also seen. Endplate staining is not due entirely to membrane infoldings since a similar pattern is seen in neonatal rat diaphragm in which postjunctional folds are shallow and rudimentary, and in chicken muscle, which lacks folds entirely. Furthermore, clusters of AChR that occur spontaneously on cultured Xenopus myotomal cells and mouse muscle cells of the C2 line are also stained more intensely than the surrounding membrane with the 58K mAb. Denervation of adult rat diaphragm muscle for relatively long times causes a dramatic decrease in the endplate staining intensity. Thus, the concentration of this evolutionarily conserved protein at postsynaptic sites may be regulated by innervation or by muscle activity.
    [Abstract] [Full Text] [Related] [New Search]