These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Deglycosylation by the Acidic Glycosidase PNGase H+ Enables Analysis of N-Linked Glycoproteins by Hydrogen/Deuterium Exchange Mass Spectrometry. Author: Comamala G, Madsen JB, Voglmeir J, Du YM, Jensen PF, Østerlund EC, Trelle MB, Jørgensen TJD, Rand KD. Journal: J Am Soc Mass Spectrom; 2020 Nov 04; 31(11):2305-2312. PubMed ID: 32955262. Abstract: Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) has become an important method to study the structural dynamics of proteins. However, glycoproteins represent a challenge to the traditional HDX-MS workflow for determining the deuterium uptake of the protein segments that contain the glycan. We have recently demonstrated the utility of the glycosidase PNGase A to enable HDX-MS analysis of N-glycosylated protein regions. Here, we have investigated the use of the acidic glycosidase PNGase H+, which has a pH optimum at 2.6, to efficiently deglycosylate N-linked glycosylated peptides during HDX-MS analysis of glycoproteins. Our results show that PNGase H+ retains high deglycosylation activity at HDX quench conditions. When used in an HDX-MS workflow, PNGase H+ allowed the extraction of HDX data from all five glycosylated regions of the serpin α1-antichymotrypsin. We demonstrate that PNGase A and PNGase H+ are capable of similar deglycosylation performance during HDX-MS analysis of α1-antichymotrypsin and the IgG1 antibody trastuzumab (TZ). However, PNGase H+ provides broader specificity and greater tolerance to the disulfide-bond reducing agent TCEP, while PNGase A offers advantages in terms of commercial availability and purity. Overall, our findings demonstrate the unique features of PNGase H+ for improving conformational analysis of glycoproteins by HDX-MS, in particular, challenging glycoproteins containing both glycosylations and disulfide bonds.[Abstract] [Full Text] [Related] [New Search]