These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo. Author: Ross GA, Russell E, Deng Y, Lu C, Harder ED, Abel R, Wang L. Journal: J Chem Theory Comput; 2020 Oct 13; 16(10):6061-6076. PubMed ID: 32955877. Abstract: The prediction of protein-ligand binding affinities using free energy perturbation (FEP) is becoming increasingly routine in structure-based drug discovery. Most FEP packages use molecular dynamics (MD) to sample the configurations of proteins and ligands, as MD is well-suited to capturing coupled motion. However, MD can be prohibitively inefficient at sampling water molecules that are buried within binding sites, which has severely limited the domain of applicability of FEP and its prospective usage in drug discovery. In this paper, we present an advancement of FEP that augments MD with grand canonical Monte Carlo (GCMC), an enhanced sampling method, to overcome the problem of sampling water. We accomplished this without degrading computational performance. On both old and newly assembled data sets of protein-ligand complexes, we show that the use of GCMC in FEP is essential for accurate and robust predictions for ligand perturbations that disrupt buried water.[Abstract] [Full Text] [Related] [New Search]