These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Drought stress improved the capacity of Rhizophagus irregularis for inducing the accumulation of oleuropein and mannitol in olive (Olea europaea) roots.
    Author: Mechri B, Tekaya M, Attia F, Hammami M, Chehab H.
    Journal: Plant Physiol Biochem; 2020 Nov; 156():178-191. PubMed ID: 32961433.
    Abstract:
    Olive trees are often subjected to a prolonged dry season with low water availability, which induces oxidative stress. Arbuscular mycorrhizal (AM) symbioses can improve olive plant tolerance to water deficit. This study investigated several aspects related to drought tolerance in AM fungi olive plants. Non-AM and AM plants were grown under well-watered or drought-stressed conditions, and mycorrhizal growth response, neutral lipid fatty acid (NLFA)16:1ω5 and phospholipid fatty acid (PLFA) 16:1ω5 in roots (intraradical mycelium) and in soil (extraradical mycelium), carbohydrates (monosaccharides, disaccharides and polyols) and phenolic compounds (phenolic alcohols, flavonoids, lignans, secoiridoids and hydroxycinnamic acid derivatives) were determined. Results showed that the amounts of PLFA 16:1ω5 and NLFA 16:1ω5 were significantly influenced by drought stress conditions. The NLFA 16:1ω5/PLFA 16:1ω5 ratio showed a dramatic decrease (-62%) with the application of water deficit stress, indicating that AM fungi allocated low carbon to storage structures under stress conditions. Mannitol and verbascoside are the main compounds detected in the roots of well-watered plants, whereas oleuropein and mannitol are the main compounds differentially accumulated in the roots of water-stressed plants. The oleuropein/verbascoside ratio increased in the case of drought-stressed AM plants by 30%, while the mannitol/oleuropein ratio was decreased by 46%, when compared to the non-AM stressed plants. Mycorrhization therefore oriented the flux toward the biosynthetic pathway of oleuropein and the data suggest that sugar and phenolic compound metabolism may have been redirected to the formation of oleuropein in roots of AM stressed plants, that may underlie their enhanced tolerance to drought stress.
    [Abstract] [Full Text] [Related] [New Search]