These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrasensitive Detection of the Hepatitis E Virus by Electrocatalytic Water Oxidation Using Pt-Co3O4 Hollow Cages. Author: Ganganboina AB, Khoris IM, Chowdhury AD, Li TC, Park EY. Journal: ACS Appl Mater Interfaces; 2020 Nov 11; 12(45):50212-50221. PubMed ID: 32967416. Abstract: A sensitive virus detection method applicable for an early stage increases the probability of survival. Here, we develop a simple and rapid detection strategy for the detection of the hepatitis E virus (HEV) by an electrocatalytic water oxidation reaction (WOR) using a platinum (Pt)-incorporated cobalt (Co)-based zeolite imidazole framework (ZIF-67). The surface cavity of ZIF-67 enables the rich loading of Pt NPs, and subsequent calcination etches the cavity, promoting the electrocatalytic activity of Pt-Co3O4 HCs. The Pt-Co3O4 HCs show excellent behavior for the WOR due to the synergistic interaction of Pt and Co3O4, evaluated by voltammetry and chronoamperometry. The synthesized Pt-Co3O4 HCs are conjugated with anti-HEV antibody (Ab@Pt-Co3O4 HCs); the electrocatalytic activity of Ab@Pt-Co3O4 HCs is combined with that of antibody-conjugated magnetic nanoparticles (MNPs) for HEV detection by a magneto-and-nanocomposite sandwich immunoassay. The sensor is challenged to detect the HEV in spiked serum samples and HEV G7 genotypes collected from the cell culture supernatant, reaching a low limit of detection down to 61 RNA copies mL-1. This work establishes a free-indicator one-step approach with the controlled design of Pt-Co3O4 HCs, which presents an effective WOR technique for virus detection in a neutral pH solution, which can be extended to electrocatalytic studies in the future integrated biosensing systems.[Abstract] [Full Text] [Related] [New Search]