These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acoustic feature based unsupervised approach of heart sound event detection. Author: Das S, Pal S, Mitra M. Journal: Comput Biol Med; 2020 Nov; 126():103990. PubMed ID: 32987200. Abstract: This paper represents an unsupervised approach to detect the positions of S1, S2 heart sound events in a Phonocardiogram (PCG) recording. Insufficiency of correctly annotated heart sound database drives us to investigate unsupervised techniques. Gammatone filter bank features are used to characterize the spectral pattern of fundamental heart sound events from noise contaminated PCG data. An unsupervised spectral clustering technique is employed for segmentation of S1/S2 and non-S1/S2 heart sound events. A Feature winning score is computed to identify the S1/S2 and non-S1/S2 frames. Finally, time based threshold is applied to detect the accurate positions of S1 and S2 heart sounds. The performance of spectral clustering is compared with other clustering methods. The proposed method offers a maximum F1-score of 98% and 92.5% for normal and abnormal PCG data respectively on 2016 PhysioNet/CinC challenge dataset. The heart sound annotation algorithm provided by PhysioNet has been used as the ground truth after hand correction.[Abstract] [Full Text] [Related] [New Search]