These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TSG-6 Attenuates Oxidative Stress-Induced Early Brain Injury in Subarachnoid Hemorrhage Partly by the HO-1 and Nox2 Pathways. Author: Li X, Liu W, Li R, Guo S, Fan H, Wei B, Zhang X, He X, Duan C. Journal: J Stroke Cerebrovasc Dis; 2020 Dec; 29(12):104986. PubMed ID: 32992175. Abstract: BACKGROUND: Early brain injury (EBI) refers to acute brain injury during the first 72 h after subarachnoid hemorrhage (SAH), which is one of the major causes of poor prognosis after SAH. Here, we investigated the effect and the related mechanism of TSG-6 on EBI after SAH. MATERIALS AND METHODS: The Sprague-Dawley rat model of SAH was developed by the endovascular perforation method. TSG-6 (5μg) was administered by an intraventricular injection within 1.5 h after SAH. The effects of TSG-6 on EBI were assessed by neurological score, brain water content (BWC) and TUNEL staining. Immunofluorescence staining was used to assay NF-κB/p-NF-κB expression in microglia. Protein expression levels of heme oxygenase-1 (HO-1), NADPH oxidase 2 (Nox2), Bcl-2, Bax, and cleaved-caspase-3 were measured to investigate the potential mechanism. The enzyme activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the level of reactive oxygen species (ROS) were analyzed using commercially available kits. RESULTS: The results showed that TSG-6 treatment alleviated the neurobehavioral dysfunction and reduced BWC and the number of TUNEL-positive neurons in EBI after SAH. TSG-6 decreased the ROS level and enhanced the enzyme activity of SOD and GSH-Px after SAH. Furthermore TSG-6 inhibited the NF-κB activation, increased the protein expression levels of HO-1 and Bcl-2 and decreased the expression levels of Nox2, Bax, and cleaved-caspase-3. The administration of TSG-6 siRNA abolished the protective effects of TSG-6 on EBI after SAH. CONCLUSION: We found that TSG-6 attenuated oxidative stress and apoptosis in EBI after SAH partly by inhibiting NF-κB and activating HO-1 pathway in brain tissue.[Abstract] [Full Text] [Related] [New Search]