These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Patient with ovarian insufficiency: baby born after anticancer therapy and re-transplantation of cryopreserved ovarian tissue.
    Author: Isachenko V, Morgenstern B, Todorov P, Isachenko E, Mallmann P, Hanstein B, Rahimi G.
    Journal: J Ovarian Res; 2020 Sep 29; 13(1):118. PubMed ID: 32993734.
    Abstract:
    BACKGROUND: The second major cause of death is cancer. In fact, the effectiveness of anticancer treatments and positive long-term prognosis for young women has increased. However, the problem of post-cancer infertility plays a significant role, because chemotherapy can be gonadotoxic and lead to the functional death of ovaries. There is potential key solution to this problem: cryopreservation of ovarian tissue before cancer therapy with re-implantation after convalescence. Data regarding cryopreservation and re-transplantation of ovarian tissue from patients with ovarian insufficiency is limited. The aim of this treatment was the re-transplantation of cryopreserved ovarian tissue after anticancer therapy of patient with ovarian insufficiency (56 IU/l FSH, 8 ng/l β-estradiol, < 1.1 ng/ml anti-Mullerian hormone, 1 primary follicle per 10mm3). CASE PRESENTATION: After the operation, four tissue fragments (10-16 × 8-13 × 1.0-1.2 mm) were cooled to 5 °C in the freezing medium (culture medium+ 6% ethylene glycol+ 6% dimethyl sulfoxide+ 0.15 M sucrose) for 24 h, frozen and thawed. Freezing was performed in four standard 5 ml cryo-vials with ice formation at - 9 °C, cooling from - 9 to - 34 °C at a rate of - 0.3 °C/min and plunging at - 34 °C into liquid nitrogen. After thawing in a 100 °C (boiling) water bath, the removal of cryoprotectants was performed in 0.5 M sucrose with 20 min. exposure in sucrose and 30 min. stepping rehydration. After thawing of one cryo-vial, part (5 mm3) of experimental ovarian tissue after 7 day in vitro culture was histological evaluated and two ovarian fragments (8 × 7 × 1.0 mm and 7 × 6 × 1.0 mm) were re-transplanted. The quantity of follicles after cryopreservation and in vitro culture was not increased (P > 0.1): it was found 1 primordial follicle in 5 mm3 of tissue. Thirty seven days after the re-transplantation of ovarian tissue, the restoration of the menstrual cycle of Patient W. was noted. Three months after the transplantation, the patient became spontaneously pregnant and delivered a healthy baby girl at term. CONCLUSIONS: Described protocol of conventional cryopreservation of ovarian tissue can be used for treatment of patients with ovarian insufficiency.
    [Abstract] [Full Text] [Related] [New Search]