These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biocathode design with highly-oriented immobilization of multi-copper oxidase from Pyrobaculum aerophilum onto a single-walled carbon nanotube surface via a carbon nanotube-binding peptide. Author: Sakamoto H, Futamura R, Tonooka A, Takamura E, Satomura T, Suye SI. Journal: Biotechnol Prog; 2021 Jan; 37(1):e3087. PubMed ID: 33016618. Abstract: Biofuel cells generate electric energy using an enzyme as a catalyst for an electrode but their stability and low battery output pose problems for practical use. To solve these problems, this study aimed to build a long-lasting and high-output biocathode as a catalyst using a highly stable hyperthermophilic archaeal enzyme, multi-copper oxidase, from Pyrobaculum aerophilum (McoP). To increase output, McoP was oriented and immobilized on single-walled carbon nanotubes (SWCNT) with a high specific surface area, and the electrode interface was designed to achieve highly efficient electron transfer between the enzyme and electrode. Type 1 copper (T1Cu), an electron-accepting site in the McoP molecule, is located near the C-terminus. Therefore, McoP was prepared by genetically engineering a CNT-binding peptide with the sequence LLADTTHHRPWT, at the C-terminus of McoP (McoP-CBP). We then constructed an electrode using a complex in which McoP-CBP was aligned and immobilized on SWCNT, and then clarified the effect of CBP. The amounts of immobilized enzymes on McoP-SWCNT and (McoP-CBP)-SWCNT complexes were almost equal. CV measurement of the electrode modified with both complexes showed 5.4 times greater current density in the catalytic reaction of the (McoP-CBP)-SWCNT/GC electrode than in the McoP-SWCNT/GC electrode. This is probably because CBP fusion immobilize the enzyme on SWCNTs in an orientational manner, and T1Cu, the oxidation-reduction site in McoP, is close to the electrode, which improves electron transfer efficiency.[Abstract] [Full Text] [Related] [New Search]