These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Smart microgel-metal hybrid particles of PNIPAM-co-PAA@AgAu: synthesis, characterizations and modulated catalytic activity.
    Author: Bhol P, Mohanty PS.
    Journal: J Phys Condens Matter; 2020 Feb 24; 33(8):084002. PubMed ID: 33017813.
    Abstract:
    Smart pH and thermoresponsive, poly(N-isopropyl acrylamide co acrylic acid) (PNIPAM-co-PAA) microgel particles are used as microreactors to prepare hybrids of gold (Au) and silver (Ag) nanoparticles (PNIPAM-co-PAA@AgAu) using a facile two steps in situ approach. These hybrid particles are characterized using the transmission electron microscope (TEM), UV-VIS spectrometer, and dynamic light scattering (DLS). TEM directly confirms the successful loading of metal nanoparticles onto microgels and the hybrid particles have a narrow size distribution. UV-VIS spectroscopy at different concentration ratios of silver/gold chloride strongly reveals the presence of plasmon peaks of both silver and gold between 10% to 25% of gold chloride concentration. DLS studies demonstrate that these hybrid microgels exhibit both pH and thermoresponsive properties comparatively with a lesser swelling than the pure microgels without loaded nanoparticles. Further, the catalytic activities of PNIPAM-co-PAA@AgAu hybrids are studied through a reduction of 4-nitrophenol (4-NP)-to-4-aminophenol (4-AP) in the presence of sodium borohydride at different pH. Interestingly, these hybrid particles exhibit modulating catalytic activity with variation in pH. The reduction kinetics decreases with increasing pH and the corresponding apparent rate constant exhibits two linear regimes with one at pH below pKa and another at pH above pKa of acrylic acid. This pH-modulated catalytic behavior of PNIPAM-co-PAA@AgAu hybrids is discussed based on pH-induced swelling/deswelling transition, the core-shell nature of microgel particles, and its intrinsic interplay with the diffusion of nitrophenols within the microgel network. Finally, our results are compared and discussed in the context of previously studied catalytic activities in different polymer-metal hybrids.
    [Abstract] [Full Text] [Related] [New Search]