These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multi-label Arrhythmia Classification from Fixed-length Compressed ECG Segments in Real-time Wearable ECG Monitoring. Author: Cheng Y, Ye Y, Hou M, He W, Pan T. Journal: Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():580-583. PubMed ID: 33018055. Abstract: Recently, classification from compressed physiological signals in compressed sensing has been successfully applied to cardiovascular disease monitoring. However, in real-time wearable electrocardiogram (ECG) monitoring, it is very difficult to directly obtain the heartbeats information from compressed ECG signals. Thus arrhythmia classification from compressed ECG signals has to be handled in fixed-length segments instead of individual heartbeats. An inevitable issue is that a fixed-length ECG segment may contain multiple different types of arrhythmia. As a result, it is not appropriate to represent the multi-type real arrhythmia with a single label. In this paper, we first introduce multiple labels into fixed-length compressed ECG segments to challenge the arrhythmia classification issue. Then, we propose a deep learning model, which can directly classify multiple different types of arrhythmia from fixed-length compressed ECG segments with the advantages of low time cost for data processing and relatively high classification accuracy at a high compression ratio. Experimental results on the MIT-BIH arrhythmia database show that the exact match rate of our proposed method has reached 96.03% at CR(Compression Ratio)=70%, 94.99% at CR=80% and 93.19% at CR=90%.[Abstract] [Full Text] [Related] [New Search]