These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mobile, Remote, and Individual Focused: Comparing Breath Carbon Monoxide Readings and Abstinence Between Smartphone-Enabled and Stand-Alone Monitors.
    Author: Tuck BM, Karelitz JL, Tomko RL, Dahne J, Cato P, McClure EA.
    Journal: Nicotine Tob Res; 2021 Mar 19; 23(4):741-747. PubMed ID: 33022057.
    Abstract:
    INTRODUCTION: Newly available, smartphone-enabled carbon monoxide (CO) monitors are lower in cost than traditional stand-alone monitors and represent a marked advancement for smoking research. New products are promising, but data are needed to compare breath CO readings between smartphone-enabled and stand-alone monitors. The purpose of this study was to (1) determine the agreement between the mobile iCO (Bedfont Scientific Ltd) with two other monitors from the same manufacturer (Micro+ pro and Micro+ basic) and (2) determine optimal, monitor-specific, cotinine-confirmed abstinence cutoff values. METHODS: Adult (≥18) smokers (n = 26) and nonsmokers (n = 21) provided three breath CO samples (using three different monitors) in each of 10 sessions, and urine cotinine was measured for gold standard determination of abstinence. CO comparisons (N = 437) were analyzed using regression-based Bland-Altman Analysis of Agreement; receiver operating characteristics curves were used to determine optimal abstinence cutoffs. RESULTS: Bland-Altman analyses indicated that the iCO monitor provided higher CO results than both Micro+ monitors. Sensitivity and specificity analyses showed that the optimal CO cutoff for determining abstinence was <3 ppm for the Micro+ pro (88% sensitivity, 93% specificity) and Micro+ basic (83% sensitivity, 98% specificity), but was higher for the iCO (<6 ppm; 73% sensitivity, 100% specificity). CONCLUSIONS: Relative to both Micro+ monitors, the smartphone-enabled iCO provided systematically higher CO values and required a higher cutoff to reliably determine smoking abstinence. This does not indicate that CO values obtained using the iCO are not valid; instead, these results suggest that monitor-specific abstinence cutoffs are needed to ensure accurate bioverification of smoking status. IMPLICATIONS: Results from this study indicate that CO values from the smartphone-enabled iCO should not be used interchangeably with the stand-alone Micro+ pro and Micro+ basic, particularly when lower CO values (<10 ppm) are critical (ie, determination of abstinence vs confirming smoking status for study inclusion). Optimal CO cutoffs recommended for determining abstinence on Micro+ and iCO monitors are at <3 and <6 ppm, respectively.
    [Abstract] [Full Text] [Related] [New Search]