These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Assembly of Polymer-Grafted Nanoparticles in Polymer Matrices. Author: Koh C, Grest GS, Kumar SK. Journal: ACS Nano; 2020 Oct 27; 14(10):13491-13499. PubMed ID: 33030334. Abstract: Leibler pioneered the idea that long enough matrix polymers of length P will spontaneously dewet a chemically identical polymer layer, comprising chains of length N, densely end-grafted to a flat surface ("brush"). This entropically driven idea is routinely used to explain experiments in which 10-20 nm diameter nanoparticles (NPs) densely grafted with polymer chains are found to phase separate from chemically identical melts for P/N ≳4. At lower grafting densities, these effects are also thought to underpin the self-assembly of grafted NPs into a variety of structures. To explore the validity of this picture, we conducted large-scale molecular dynamics simulations of grafted NPs in a chemically identical polymer melt. For the NPs we consider, in the ≈5 nm diameter range, we find no phase separation even for P/N = 10 in the absence of attractions. Instead, we find behavior that more closely parallels experiments when all of the chain monomers are equally attractive to each other but repel the NPs. Our results thus imply that experimental situations investigated to date are dominated by the surfactancy of the NPs, which is driven by the chemical mismatch between the inorganic core and the organic ligands (the graft and free chains are chemically identical). Entropic effects, that is, the translational entropy of the NPs and the matrix, the entropy of mixing of the grafts and the matrix, and the conformational entropy of the chains appear to thus have a second-order effect even in the context of these model systems.[Abstract] [Full Text] [Related] [New Search]