These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Helicobacter delphinicola sp. nov., isolated from common bottlenose dolphins Tursiops truncatus with gastric diseases.
    Author: Segawa T, Ohno Y, Tsuchida S, Ushida K, Yoshioka M.
    Journal: Dis Aquat Organ; 2020 Oct 08; 141():157-169. PubMed ID: 33030444.
    Abstract:
    Gastritis and gastric ulcers are well-recognized symptoms in cetaceans, and the genus Helicobacter is considered as the main cause. In this study, we examined the gastric fluid of captive common bottlenose dolphins Tursiops truncatus with gastric diseases in order to isolate the organisms responsible for diagnosis and treatment. Four Gram-negative, rod-shaped isolates (TSBT, TSH1, TSZ, and TSH3) with tightly coiled spirals with 2-4 turns and 2-6 bipolar, sheathed flagella, were obtained from gastric fluids of common bottlenose dolphins with gastric diseases. Phylogenetic analysis, based on 16S rRNA, atpA, and 60 kDa heat-shock protein (hsp60) genes, demonstrated that these isolates form a novel lineage within the genus Helicobacter. Analyses of 16S rRNA, atpA, and hsp60 gene sequences showed that isolate TSBT was most closely related to H. cetorum MIT99-5656T (98.5% similarity), H. pylori ATCC 43504T (76.7% similarity), and H. pylori ATCC 43504T (78.0% similarity), respectively. Type strains of Helicobacter showing resistance to 2% NaCl have not been reported previously; however, these novel isolates were resistant to 2% NaCl. Culture supernatant of some isolates induced intracellular vacuolization in mammalian cultured cells. These data, together with the different morphological and biochemical characteristics of the isolates, reveal that these isolates represent a novel species for which we propose the name Helicobacter delphinicola sp. nov. with type strain TSBT (= JCM 32789T = TSD-183T). Future studies will confirm whether H. delphinicola plays a role in lesion etiopathogenesis in cetaceans.
    [Abstract] [Full Text] [Related] [New Search]