These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Codon assignment evolvability in theoretical minimal RNA rings. Author: Demongeot J, Seligmann H. Journal: Gene; 2021 Feb 15; 769():145208. PubMed ID: 33031892. Abstract: Genetic code codon-amino acid assignments evolve for 15 (AAA, AGA, AGG, ATA, CGG, CTA, CTG. CTC, CTT, TAA, TAG, TCA, TCG, TGA and TTA (GNN codons notably absent)) among 64 codons (23.4%) across the 31 genetic codes (NCBI list completed with recently suggested green algal mitochondrial genetic codes). Their usage in 25 theoretical minimal RNA rings is examined. RNA rings are designed in silico to code once over the shortest length for all 22 coding signals (start and stop codons and each amino acid according to the standard genetic code). Though designed along coding constraints, RNA rings resemble ancestral tRNA loops, assigning to each RNA ring a putative anticodon, a cognate amino acid and an evolutionary genetic code integration rank for that cognate amino acid. Analyses here show 1. biases against/for evolvable codons in the two first vs last thirds of RNA ring coding sequences, 2. RNA rings with evolvable codons have recent cognates, and 3. evolvable codon and cytosine numbers in RNA ring compositions are positively correlated. Applying alternative genetic codes to RNA rings designed for nonredundant coding according to the standard genetic code reveals unsuspected properties of the standard genetic code and of RNA rings, notably on codon assignment evolvability and the special role of cytosine in relation to codon assignment evolvability and of the genetic code's coding structure.[Abstract] [Full Text] [Related] [New Search]