These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Long non-coding RNA LINC00511/miR-150/MMP13 axis promotes breast cancer proliferation, migration and invasion.
    Author: Shi G, Cheng Y, Zhang Y, Guo R, Li S, Hong X.
    Journal: Biochim Biophys Acta Mol Basis Dis; 2021 Mar 01; 1867(3):165957. PubMed ID: 33031905.
    Abstract:
    Breast cancer is the most common cancer affecting women and one of the leading causes of cancer-related deaths worldwide. In existing studies, some long non-coding RNAs (lncRNAs) are considered to have important regulatory roles in the development of cancers. However, the pathogenic significance of LINC00511 in breast cancer is unclear. In this study, LINC00511 was significantly up-regulated in breast cancer, and its expression level was correlated to poor prognosis of patients with breast cancer. To further study the role of LINC00511 in breast cancer, we knocked down the expression of LINC00511 using siRNAs. Cells transfected with siRNA-2 proliferated, and its metastasis was suppressed. RNA-seq analysis revealed 182 potential targets for LINC00511. The in-silico analysis revealed that differently expressed genes were closely related to signaling mediated by p38-alpha and p38-beta. Subcellular localization showed that LINC00511 was mainly located in the cytoplasm, and knocking down the LINC00511 gene could down-regulate the expression of MMP13. Using bioinformatics analysis combined with dual-luciferase report assay, we finally determined that miR-150 was the direct target of LINC00511. The dual-luciferase report assays also showed that MMP13 was the target of miR-150. LINC00511 knockdown significantly reduced MMP13 protein levels, and miR-150 gene knockdown significantly rescued the down-regulation of MMP13 caused by LINC00511 gene silencing. Moreover, silencing MMP13 and overexpression of miR-150 could reduce the proliferation of breast cancer cells. In conclusion, our data show that LINC00511 is a breast cancer promoter, and the LINC00511/miR-150/MMP13 axis may be a new therapeutic strategy for breast cancer patients.
    [Abstract] [Full Text] [Related] [New Search]