These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Putative MAPK Kinase Kinase Gene Ssos4 is Involved in Mycelial Growth, Virulence, Osmotic Adaptation, and Sensitivity to Fludioxonil and is Essential for SsHog1 Phosphorylation in Sclerotinia sclerotiorum. Author: Li T, Xiu Q, Wang J, Duan Y, Zhou M. Journal: Phytopathology; 2021 Mar; 111(3):521-530. PubMed ID: 33044134. Abstract: The high osmolarity glycerol (HOG) pathway, comprising a two-component system and the Hog1 mitogen-activated protein kinase (MAPK) cascade, plays a pivotal role in eukaryotic organisms. Previous studies suggested that the biological functions of some key genes in the HOG pathway varied in filamentous fungi. In this study, we characterized a putative MAPK kinase kinase gene, Ssos4, in Sclerotinia sclerotiorum, which encoded a phosphotransferase in the MAPK cascade. Compared with the wild-type progenitor HA61, the deletion mutant ∆Ssos4-63 exhibited impaired mycelial growth, sclerotia formation, increased hyphal branches, and decreased virulence. The deficiencies of the deletion mutant ∆Ssos4-63 were recovered when the full-length Ssos4 gene was complemented. Deletion of Ssos4 increased the sensitivity to osmotic stresses and cell wall agents and the resistance to fludioxonil and dimethachlon. Intracellular glycerol accumulation was not induced in the deletion mutant ∆Ssos4-63 when treated with fludioxonil and NaCl and the phosphorylation of SsHog1 was also cancelled by the deletion of Ssos4. Consistent with the glycerol accumulation and increased expression levels of SsglpA and Ssfps1, controlling glycerol synthesis and close of glycerol channel under hyperosmotic stress, respectively, were detected in the wild-type strain HA61 but not in the deletion mutant ∆Ssos4-63. Moreover, the relative expression level of Sshog1 significantly decreased, whereas the expression level of Ssos5 increased in the deletion mutant ∆Ssos4-63. These results indicated that Ssos4 played important roles in mycelial growth and differentiation, sclerotia formation, virulence, hyperosmotic adaptation, fungicide sensitivity, and the phosphorylation of SsHog1 in S. sclerotiorum.[Abstract] [Full Text] [Related] [New Search]