These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microstructure, mechanical properties, and in vitro behavior of biodegradable Zn-1Mg-0.1Ca and Zn-1Mg-0.5Ca. Author: Li H, Shen C, Ruan D, Liu X, Li X, Guo S, Guo Z. Journal: J Mater Sci Mater Med; 2020 Oct 12; 31(10):88. PubMed ID: 33044713. Abstract: In the present study, the microstructure, mechanical properties, corrosion behavior, wettability, haemocompatibility, and cytocompatibility of the as-cast and as-rolled biodegradable Zn-1Mg-0.1Ca and Zn-1Mg-0.5Ca have been systematically investigated to evaluate their feasibility as potential biodegradable materials. The results demonstrated that the Zn-1Mg-0.1Ca have significantly improved mechanical properties, with the yield strength (YS), ultimate tensile strength (UTS), and elongation of as-rolled Zn-1Mg-0.1Ca are (209.04 ± 28.31) MPa, (331.51 ± 40.06) MPa, and (35.43 ± 3.53)%, respectively. Wettability test results demonstrated that the Zn-1Mg-0.1Ca and Zn-1Mg-0.5Ca have hydrophilic surfaces that can enhance cell responses and tissue-implant interactions. The haemocompatibility evaluation showed that the hemolysis ratio of Zn-1Mg-0.1Ca have a low hemolysis ratio of 0.6%; the platelets remain sphere morphology and are not activated. High cell viability indicates the cytocompatibility of the as-rolled Zn-1Mg-0.1Ca alloy. The Zn-1Mg-0.1Ca alloy can be considered as new suitable biodegradable Zn-based alloys for further biomedical applications.[Abstract] [Full Text] [Related] [New Search]