These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deep convolution neural networks based artifact suppression in under-sampled radial acquisitions of myocardial T 1 mapping images.
    Author: Nezafat M, El-Rewaidy H, Kucukseymen S, Hauser TH, Fahmy AS.
    Journal: Phys Med Biol; 2020 Nov 24; 65(22):225024. PubMed ID: 33045693.
    Abstract:
    We developed a deep convolutional neural network (CNN) based method to remove streaking artefact from accelerated radial acquisitions of myocardial T 1-mapping images. A deep CNN based on a modified U-Net architecture was developed and trained to remove the streaking artefacts from under-sampled T 1 mapping images. A total of 2090 T 1-weighted images for 33 patients (55 ± 15 years, 19 males) and five healthy subjects (30 ± 14 years, 2 males) were used for training and testing the network. The images were acquired using radial slice interleaved T 1 mapping sequence (STONE) and retrospectively under-sampled to achieve acceleration rate of 4 (corresponding to 48 spokes). The dataset was split into training and testing subsets with 23 subjects (60%) and 15 subjects (40%), respectively. For generating voxel-wise T 1 maps, a two-parameter fitting model was used. Network performance was evaluated using normalized mean square error (NMSE), structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) metrics. The proposed network allowed fast (<0.3 s/image) removal of the artefact from all T 1-weighted testing images and the corresponding T 1 maps with PSNR = 64.3 ± 1.02, NMSE = 0.2 ± 0.09 and SSIM = 0.9 ± 0.3 × 10-4. There was no statistically significant difference between the measured T 1 maps for both per-subject (reference: 1085 ± 37 ms, CNN: 1088 ± 37 ms, p = 0.4) and per-segment (reference: 1084 ± 48 ms, CNN: 1083 ± 58 ms, p = 0.9) analyses. In summary, deep CNN allows fast and reliable removal of streaking artefact from under-sampled radial T 1 mapping images. Our results show that the highly non-linear operations of deep CNN processing of T 1 mapping images do not impact accurate reconstruction of myocardial T 1 maps.
    [Abstract] [Full Text] [Related] [New Search]