These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Estimation of ground-level PM2.5 concentration using MODIS AOD and corrected regression model over Beijing, China. Author: Xu X, Zhang C. Journal: PLoS One; 2020; 15(10):e0240430. PubMed ID: 33048987. Abstract: To establish a new model for estimating ground-level PM2.5 concentration over Beijing, China, the relationship between aerosol optical depth (AOD) and ground-level PM2.5 concentration was derived and analysed firstly. Boundary layer height (BLH) and relative humidity (RH) were shown to be two major factors influencing the relationship between AOD and ground-level PM2.5 concentration. Thus, they are used to correct MODIS AOD to enhance the correlation between MODIS AOD and PM2.5. When using corrected MODIS AOD for modelling, the correlation between MODIS AOD and PM2.5 was improved significantly. Then, normalized difference vegetation index (NDVI), surface temperature (ST) and surface wind speed (SPD) were introduced as auxiliary variables to further improve the performance of the corrected regression model. The seasonal and annual average distribution of PM2.5 concentration over Beijing from 2014 to 2016 were mapped for intuitively analysing. Those can be regarded as important references for monitoring the ground-level PM2.5 concentration distribution. It is obviously that the PM2.5 concentration distribution over Beijing revealed the trend of "southeast high and northwest low", and showed a significant decrease in annual average PM2.5 concentration from 2014 to 2016.[Abstract] [Full Text] [Related] [New Search]