These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modification of Bacillus clarkii γ-Cyclodextrin Glycosyltransferase and Addition of Complexing Agents to Increase γ-Cyclodextrin Production.
    Author: Wang L, Xia Y, Su L, Wu J.
    Journal: J Agric Food Chem; 2020 Oct 28; 68(43):12079-12085. PubMed ID: 33052686.
    Abstract:
    γ-Cyclodextrin (γ-CD), a cyclic oligosaccharide containing eight glucose units linked by α-1,4-glycosidic bonds, can be produced from starch using cyclodextrin glycosyltransferase (CGTase). Unfortunately, this enzymatic process produces mixtures of α-, β-, and γ-CD. In this study, amino acid residues in the subsite -3 (T47 and F91) and the central subsite (Y186) of Bacillus clarkii γ-CGTase were modified to improve the γ-CD production. The cyclization activities and product specificities of mutants T47H and F91W were similar to those of the wild-type. The cyclization activities of mutants F91N and F91L were significantly greater than those of the wild-type but their γ-CD product specificities were lower. Finally, the central subsite mutant Y186W displayed a γ-CD specificity (94.6%) significantly greater than that of the wild-type (77.1%). To maximize the γ-CD yield, the effects of added complexing agents were investigated. Among the cyclic complexing agents tested, low-boiling cyclododecanone was the smallest that precipitated with γ-CD. When cyclododecanone was used with Y186W, the total CD yield reached 72.6%, and 96.6% of the product was γ-CD. These results, which represent the highest γ-CD yield ever reported, may provide a way to improve large-scale γ-CD preparation and expand the uses of γ-CD in the future.
    [Abstract] [Full Text] [Related] [New Search]