These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein Phosphatase-1 Complex Disassembly by p97 is Initiated through Multivalent Recognition of Catalytic and Regulatory Subunits by the p97 SEP-domain Adapters. Author: Kracht M, van den Boom J, Seiler J, Kröning A, Kaschani F, Kaiser M, Meyer H. Journal: J Mol Biol; 2020 Nov 20; 432(23):6061-6074. PubMed ID: 33058883. Abstract: The AAA-ATPase VCP/p97 cooperates with the SEP-domain adapters p37, UBXN2A and p47 in stripping inhibitor-3 (I3) from protein phosphatase-1 (PP1) for activation. In contrast to p97-mediated degradative processes, PP1 complex disassembly is ubiquitin-independent. It is therefore unclear how selective targeting is achieved. Using biochemical reconstitution and crosslink mass spectrometry, we show here that SEP-domain adapters use a multivalent substrate recognition strategy. An N-terminal sequence element predicted to form a helix, together with the SEP-domain, binds and engages the direct target I3 in the central pore of p97 for unfolding, while its partner PP1 is held by a linker between SHP box and UBX domain locked onto the peripheral N-domain of p97. Although the I3-binding element is functional in p47, p47 in vitro requires a transplant of the PP1-binding linker from p37 for activity stressing that both sites are essential to control specificity. Of note, unfolding is then governed by an inhibitory segment in the N-terminal region of p47, suggesting a regulatory function. Together, this study reveals how p97 adapters engage a protein complex for ubiquitin-independent disassembly while ensuring selectivity for one subunit.[Abstract] [Full Text] [Related] [New Search]