These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Optimized protocol for metabolomic and lipidomic profiling in formalin-fixed paraffin-embedded kidney tissue by LC-MS.
    Author: Neef SK, Winter S, Hofmann U, Mürdter TE, Schaeffeler E, Horn H, Buck A, Walch A, Hennenlotter J, Ott G, Fend F, Bedke J, Schwab M, Haag M.
    Journal: Anal Chim Acta; 2020 Oct 16; 1134():125-135. PubMed ID: 33059858.
    Abstract:
    Formalin-fixed and paraffin-embedded (FFPE) tissue represents a valuable resource to examine cancer metabolic alterations and to identify potential markers of disease. Protocols commonly used for liquid-chromatography mass spectrometry (LC-MS)-based FFPE metabolomics have not been optimized for lipidomic analysis and pre-analytical factors, that potentially affect metabolite levels, were scarcely investigated. We here demonstrate the assessment and optimization of sample preparation procedures for comprehensive metabolomic and lipidomic profiling in FFPE kidney tissue by LC-QTOF-MS. The optimized protocol allows improved monitoring of lipids including ceramides (Cer), glycosphingolipids (GSL) and triglycerides (TAGs) while the profiling capability for small polar molecules is maintained. Further, repeatable sample preparation (CVs < 20%) along with high analytical (CVs < 10%) and inter-day precision (CVs < 20%) is achieved. As proof of concept, we analyzed a set of clear cell renal cell carcinoma (ccRCC) and corresponding non-tumorous FFPE tissue samples, achieving phenotypic distinction. Investigation of the impact of tissue fixation time (6 h, 30 h and 54 h) on FFPE tissue metabolic profiles revealed metabolite class-dependent differences on their detection abundance. Whereas specific lipids (e.g. phosphatidylinositoles, GSLs, saturated fatty acids and saturated lyso-phosphatidytlethanolamines [LPE]) remained largely unaffected (CVs < 20% between groups of fixation time), neutral lipids (e.g. Cer and TAGs) exhibited high variability (CVs > 80%). Strikingly, out of the lipid classes assigned as unaffected, fatty acids 18:0, 16:0 and LPE 18:0 were detectable by high-resolution MALDI-FT-ICR MS imaging in an independent cohort of ccRCC tissues (n = 64) and exhibited significant differences between tumor and non-tumor regions.
    [Abstract] [Full Text] [Related] [New Search]