These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Relations between knee and ankle muscle coactivation and temporospatial gait measures in patients without hypertonia early after stroke.
    Author: Chow JW, Stokic DS.
    Journal: Exp Brain Res; 2020 Dec; 238(12):2909-2919. PubMed ID: 33063171.
    Abstract:
    It is unclear whether muscle coactivation during gait is altered early after stroke and among which muscles. We sought to characterize muscle coactivation during gait in subacute stroke subjects without hypertonia and explore the relationship with temporospatial parameters. In 70 stroke (23 ± 12 days post-onset) and 29 age-matched healthy subjects, surface electromyography signals were used to calculate coactivation magnitude and duration between rectus femoris and medial hamstring (knee antagonistic coactivation), tibialis anterior and medial gastrocnemius (ankle antagonistic coactivation), and rectus femoris and medial gastrocnemius (extensor synergistic coactivation) during early double-support (DS1), early single-support (SS1), late single-support (SS2), late double-support (DS2), and swing (SW). Compared to both free and very-slow speeds of controls, stroke subjects had bilaterally decreased ankle coactivation magnitude in SS2 and duration in SS1 and SS2 as well as increased extensor coactivation magnitude in DS2 and SW. Both non-paretic knee and ankle coactivation magnitudes in SS2 moderately correlated with most temporospatial parameters (|r| ≥ 0.40). Antagonistic and synergistic coactivation patterns of the knee and ankle muscles during gait are altered bilaterally in subacute stroke subjects without lower limb hypertonia suggesting impairments in motor control. Greater coactivation magnitudes in the non-paretic knee and both ankles during the terminal stance (SS2) are associated with the overall worse gait performance. Unlike previously reported excessive coactivation or no change in chronic stroke, bilaterally decreased and increased coactivation patterns are present in subacute stroke. These findings warrant longitudinal studies to examine the evolution of changes in muscle coactivation from subacute to chronic stroke.
    [Abstract] [Full Text] [Related] [New Search]