These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Application of high-pressure homogenization to tailor the functionalities of native wheat starch.
    Author: Peressini D, Melchior S, Berlese M, Calligaris S.
    Journal: J Sci Food Agric; 2021 May; 101(7):2668-2675. PubMed ID: 33063348.
    Abstract:
    BACKGROUND: The effect of high-pressure homogenization (HPH) on the rheological and thermal properties, water retention capacity (WRC), morphology and in vitro digestion of wheat starch was evaluated. Starch suspensions (50 g kg-1 , w/w) were treated at increasing pressures (up to 100 MPa) and numbers of cycles (up to 5) to generate a wide range of energy densities (70-500 MJ m-3 ) delivered to the sample during processing. RESULTS: High-pressure homogenization induced a partial starch gelatinization confirmed by higher digestibility. Gelatinization degree (GD) was between 13% and 83%, causing a wide range of functional properties. High-pressure homogenization-treated starch samples showed WRC values of 810-1910 g kg-1 . Storage modulus (G') and complex viscosity (η* ) of starch dispersions were almost two and three times higher than the control at 13% and 83% GD, respectively. Positive linear relationships between GD (R = 0.98, P < 0.001), WRC (R = 0.87, P < 0.05), or rheological parameters (R = 0.89÷0.90, P < 0.01) and energy density of HPH treatments were found. CONCLUSION: High-pressure homogenization treatment represents a promising technology to obtain wheat starch with tailored rheological properties and digestibility, which allows the texture and glycemic response of food products to be adjusted. © 2020 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]