These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deficiency of NEAT1 prevented MPP+-induced inflammatory response, oxidative stress and apoptosis in dopaminergic SK-N-SH neuroblastoma cells via miR-1277-5p/ARHGAP26 axis.
    Author: Zhou S, Zhang D, Guo J, Chen Z, Chen Y, Zhang J.
    Journal: Brain Res; 2021 Jan 01; 1750():147156. PubMed ID: 33069733.
    Abstract:
    Noncoding RNAs including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been documented to play prominent role in neurodegenerative diseases including Parkinson's disease (PD). This study intended to investigate the role of lncRNA nuclear enriched assembly transcript 1 (NEAT1) in MPP+-induced PD model in dopaminergic neuronblastoma SK-N-SH cells, as well as its mechanism through sponging miRNA (miR)-1277-5p. Real-time PCR and western blotting revealed that NEAT1 and ARHGAP26 were upregulated, and miR-1277-5p was downregulated in MPP+-treated SK-N-SH cells in a certain of concentration- and time- dependent manner. MPP+ induced apoptosis in SK-N-SH cells, as evidenced by decreased cell viability and Bcl-2 expression, and elevated apoptosis rate and levels of Bax and cleaved caspase-3, which were examined by MTT assay, flow cytometry and western blotting. Moreover, commercial assay kits indicated that inflammatory response and oxidative stress were provoked in response to MPP+, due to promoted contents of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, malondialdehyde, and lactate dehydrogenase, accompanied with suppressed superoxide dismutase and glutathione peroxidase levels. Notably, MPP+-induced apoptosis, inflammatory response and oxidative stress in SK-N-SH cells were mitigated by NEAT1 knockdown and/or miR-1277-5p overexpression. Moreover, silencing of miR-1277-5p could abrogate the suppression of NEAT1 deficiency on MPP+-induced cell injury. Similarly, upregulating miR-1277-5p-elicited neuroprotection in MPP+-induced SK-N-SH cells was reversed by ARHGAP26 restoration. Dual-luciferase reporter assay demonstrated a direct interaction between miR-1277-5p and NEAT1 or ARHGAP26. Collectively, NEAT1 upregulation might contribute to MPP+-induced neuron injury via NEAT1-miR-1277-5p-ARHGAP26 competing endogenous RNAs (ceRNAs) pathway.
    [Abstract] [Full Text] [Related] [New Search]