These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of genetic and environmental factors on variations of seed heteromorphism in Suaeda aralocaspica.
    Author: Cao J, Chen L, Wang J, Xing J, Lv X, Maimaitijiang T, Lan H.
    Journal: AoB Plants; 2020 Oct; 12(5):plaa044. PubMed ID: 33072248.
    Abstract:
    Seed heteromorphism is an adaptive strategy towards adversity in many halophytes. However, the underlying mechanisms and ecological significance of seed heteromorphism have not been deeply explored. Using Suaeda aralocaspica, a typical C4 annual halophyte without Kranz anatomy, we studied seed morphology, differentiation of morphs and fruit-setting patterns, and correlated these traits with germination responses, seed characteristics and heteromorphic seed ratio. To elucidate the genetic basis of seed heteromorphism, we analysed correlated patterns of gene expression for seed development-related genes as well. We observed that S. aralocaspica produced three types of seed morph: brown, large black and small black with differences in colour, size, mass and germination behaviour; the latter two were further distinguished by their origin in female or bisexual flowers, respectively. Further analysis revealed that seed heteromorphism was associated with genetic aspects including seed positioning, seed coat differentiation and seed developmental gene expression, while variations in seed heteromorphism may be associated with environmental conditions, e.g. annual precipitation, temperature, daylight and their monthly distribution in different calendar years. Seed heteromorphism and its variations in S. aralocaspica show multilevel regulation of the bet-hedging strategy that influences phenotypic plasticity, which is a consequence of internal genetic and external environmental factor interaction. Our findings contribute to the understanding of seed heteromorphism as a potential adaptive trait of desert plant species.
    [Abstract] [Full Text] [Related] [New Search]