These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: SH3PXD2A-AS1/miR-330-5p/UBA2 ceRNA network mediates the progression of colorectal cancer through regulating the activity of the Wnt/β-catenin signaling pathway. Author: Guo S, Zhu KX, Yu WH, Wang T, Li S, Wang YX, Zhang CC, Guo JQ. Journal: Environ Toxicol; 2021 Oct; 36(10):1969-1980. PubMed ID: 33073888. Abstract: Long non-coding RNAs have important roles in the occurrence and progression of various cancers. However, the molecular mechanism of lncRNAs in colorectal cancer (CRC) is not well illustrated. Thus, we used bioinformatics methods to find potential lncRNAs associated with CRC progression, and chose SH3PXD2A-AS1 as a candidate for further analysis. The roles of SH3PXD2A-AS1 in CRC cells were determined by CCK-8, transwell invasion, wound healing and flow cytometry assays. Besides, we established the CRC tumor models in nude mice to study the effect of SH3PXD2A-AS1 on the tumor growth. Based on the ceRNA hypothesis, we used miRDB and miRTarBase websites to identify the SH3PXD2A-AS1-related ceRNA regulatory network, and measured the roles of this network in CRC cells. The results revealed that the expression profiles of SH3PXD2A-AS1 from GEO and TCGA databases showed an aberrant high level in CRC tissues compared with colorectal normal tissues. SH3PXD2A-AS1 over-expression was also found in CRC cells. SH3PXD2A-AS1 knockdown inhibited the CRC cellular proliferation, invasion and migration but induced apoptosis. Besides, SH3PXD2A-AS1 knockdown also suppressed the growth of CRC tumors. Furthermore, SH3PXD2A-AS1 could function as a ceRNA of miR-330-5p. Additionally, UBA2 was proved to be a target gene of miR-330-5p. Moreover, SH3PXD2A-AS1 knockdown downregulated UBA2 expression through sponging miR-330-5p to inactivate the Wnt/β-catenin signaling pathway, thereby inhibiting the cell growth and promoting apoptosis. Therefore, the SH3PXD2A-AS1/miR-330-5p/UBA2 network could regulate the progression of CRC through the Wnt/β-catenin pathway. These findings offer new sights for understanding the pathogenesis of CRC and provide potential biomarkers for CRC treatment.[Abstract] [Full Text] [Related] [New Search]